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STMMARY 

A t heo re t i ca l   bas i s   has   been   deve loped   fo r   t he   des ign   o f   f a s t ene r s  which a re  
f r e e  of  thermal stress. A f a s t ene r   can   be   shaped   t o   e l imina te   t he   t he rma l  stress 
which would o therwise   resu l t   f rom  d i f fe ren t ia l   thermal   expans ion   be tween  d i ss imi la r  
f a s t ene r   and   shee t  materials f o r  many combina t ions   o f   i so t rop ic   and   o r tho t rop ic  
materials. The r e s u l t i n g   j o i n t   r e m a i n s   s n u g ,   y e t   f r e e   o f   t h e r m a l  stress a t  any t e m -  
p e r a t u r e ,   i f   t h e   j o i n t  i s  uniform i n   t e m p e r a t u r e ,   i f  it i s  f r i c t i o n l e s s ,   a n d   i f   t h e  
coef f ic ien ts   o f   thermal   expans ion   of   the  materials do  not  change  with  temperature.  
In  general ,   such a fas tener   has   curved   s ides ;  however, i f   b o t h  materials have  iso- 
t rop ic   coe f f i c i en t s   o f   t he rma l   expans ion ,  a c o n i c a l   f a s t e n e r  i s  f r ee   o f   t he rma l  
stress. Equations a re  p resen ted   fo r   t he rma l - s t r e s s - f r ee   shapes  a t  b o t h   i n i t i a l   a n d  
f i n a l   t e m p e r a t u r e ,   a n d   t y p i c a l   f a s t e n e r   s h a p e s   a r e  shown. 

INTRODUCTION 

A r e c e n t   e f f o r t  a t  t h e  NASA Langley  &search  Center  has  been  aimed a t   t h e   d e v e l -  
opment  of high-temperature   s t ructures   of   carbon-carbon  mater ia ls .  The l a rges t   coe f -  
f i c i e n t  of  thermal  expansion (CTE)  of  carbon-carbon i s  approximately  an  order   of  
magnitude  lower  than  the CTE of metals typ ica l ly   used   for   fas teners .   This   thermal -  
expansion  mismatch  can  cause  fa i lure   of   the   carbon-carbon material around a s t anda rd ,  
snug- f i t t i ng ,   cy l ind r i ca l   f a s t ene r .  A c l e a r a n c e   l e f t   a r o u n d   t h e   f a s t e n e r   t o  accommo- 
da te   the   expans ion   can  make t h e   j o i n t   u n a c c e p t a b l y   l o o s e  a t  low temperatures.  Fig- 
u r e  1 shows a c y l i n d r i c a l   s t a i n l e s s - s t e e l   f a s t e n e r   w h i c h  w a s  i n s t a l l e d   i n  a p i e c e  of 
graphi te   wi th  a c l o s e   t o l e r a n c e   f i t .  When t h i s  specimen was h e a t e d   t o  1600OF i n  a 
vacuum f u r n a c e ,   t h e   g r a p h i t e   a r o u n d   t h e   f a s t e n e r   f a i l e d   d u r i n g   t h e   i n i t i a l   t h e r m a l  
cycle.  ( See f i g .  1. ) 

A b i con ic   f a s t ene r   w i th   co inc iden t   ve r t i ce s   ( r e f .  l ) ,  shown i n   f i g u r e  2 ( a ) ,  was 
p r o p o s e d   f o r   t h e r m a l - s t r e s s - f r e e   j o i n t s   i n   m a t e r i a l s   w i t h   i s o t r o p i c  CTE and i s  t h e  
s u b j e c t  of a pa ten t   appl ica t ion .   F igure   2 (b)  shows a specimen  which c o n s i s t s  of two 
p ieces   o f   g raphi te   jo ined  by s t e e l  b iconic   fas teners ,   which   provide  a t i g h t   j o i n t   a t  
room temperature.  This  specimen w a s  a l s o   h e a t e d   t o  1600OF i n  a vacuum furnace.  The 
g raph i t e   a round   t he   con ica l   f a s t ene r  showed no  evidence  of damage a f t e r   f o u r   t h e r m a l  
cyc le s  . 

Two-dimensional  carbon-carbon material, which cons is t s   o f   l ayers   o f   carbon-f iber  
c l o t h   i n  a carbon  matr ix ,  w a s  found t o  have a through-the-thickness CTE which i s  
twice the   i n -p l ane  CTE. (See r e f .  2 . )  Although t h e   c o n i c a l   f a s t e n e r ,  which w a s  
des igned   fo r   i so t rop ic  materials, should   reduce   the   thermal  stresses, it would n o t   b e  
e x p e c t e d   t o   e l i m i n a t e  them. The cone   angle   in   the   carbon-carbon,   wi th  i t s  unequal 
CTE, changes   w i th   t enpe ra tu re ,   bu t   t he   cone   ang le   i n   t he   i so t rop ic  metal f a s t e n e r  
remains   cons tan t .   Consequent ly ,   the   o r ig ina l ly   snug-f i t t ing   conica l   mat ing   sur faces  
in t e r f e re   w i th   one   ano the r   du r ing   hea t ing .  This interference  causes   mechanical   con-  
s t r a i n t s   t o   e x p a n s i o n ,   a n d   t h u s   c a u s e s   t h e r m a l  stresses. The u s e  of  curved-sided 
f a s t e n e r s   t o   e l i m i n a t e   t h e r m a l  stresses a r o u n d   f a s t e n e r s   i n  materials whose c o e f f i -  
c ien ts   o f   thermal   expans ion  are o r t h o t r o p i c  i s  d i s c u s s e d   i n   r e f e r e n c e  3. However, 
approximations i n   t h e   a n a l y s i s   r e s u l t e d   i n  a so lu t ion   which   reduces ,   bu t   does   no t  
e l iminate ,   thermal  stresses. 



This paper conta ins  the s o l u t i o n  for an   in te r fe rence- f ree   in te r face   be tween two 
materials w i t h   o r t h o t r o p i c   c o e f f i c i e n t s  of  thermal  expansion. The appl ica t ion   of  
t h i s   s o l u t i o n  to  an  axisymmetric  fastener for a wide  range  of material combinations 
is also discussed.   Within  the framework of the  s implifying  assumptions,   th is   solu-  
t ion   p rovides  a basis for design  of thermal-stress-free f a s t e n e r s   i n  materials with a 
wide  range of CTE. Equations are p resen ted   fo r   t he   f a s t ene r   shapes  a t  t h e   i n i t i a l  
temperature  and a t  elevated temperatures.  
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SYMBOLS 

cons tan t   o f   in tegra t ion  

a x i a l  o f fse t  of ver tex  of  cone i n   c o n i c a l   f a s t e n e r  a t  i n i t i a l   t e m p e r a t u r e  

thermal-expansion term i n   e q u a t i o n  (B4) 

f r a c t i o n  of t o t a l   t h i c k n e s s  

length  

s lope  of l i n e  

exponents   in   equa t ion  ( 4 )  

r a d i u s  of fas tener   shank 

reference  radius   of   fas tener   shank 

coordinates  of s p e c i f i e d   p o i n t  on i n i t i a l  boundary 

c y l i n d r i c a l   c o o r d i n a t e s  

temperature 

thickness  

l o c a t i o n  of  zero-thermal-expansion  mismatch  (fig. 1 2 )  

washer  thickness 

reference  washer  thickness 

s p e c i f i e d   p o i n t  on i n i t i a l  boundary 

rec tangular   Car tes ian   coord ina tes  

c o e f f i c i e n t  of thermal expansion (CTE) 

average CTE over a given  temperature  range 

d i f f e r e n c e  or change 

cone  angle 



Subscr ip ts  : 

0 i n i t i a l   o r   r e f e r e n c e   c o n d i t i o n s  

1' m a t e r i a l  1 

2 ma te r i a l  2 

ANALYSIS 

The objec t ive   o f   th i s   two-dimens iona l   ana lys i s  i s  t o   f i n d   a n   i n t e r f a c e   b e t w e e n  
t w o  materials wi th   o r tho t rop ic  CTE along  which  the two m a t e r i a l s  w i l l  remain i n  con- 
tact ,  wi thout   in te r fe rence   o r   separa t ion ,   as   t empera ture   changes .   This   ana lys i s  
requi res   an   exac t   express ion   for   thermal   expans ion .  The b a s i c   r e l a t i o n  between 
expansion  and  temperature  change i s  given by 

dL/L = a dT 

where L = Length, T = Temperature,  and a = Coeff ic ient   of   thermal   expansion.  
In tegra t ion   of   equa t ion  ( 1  ) produces 

where a i s  the  average  value  of  a between  temperatures To and T and  where t h e  
s u b s c r i p t  o s i g n i f i e s   i n i t i a l   o r   r e f e r e n c e   c o n d i t i o n s .  The Taylor   se r ies   expans ion  
fo r   equa t ion  ( 2 )  i s  

- 

r 2 2 3 3 1 

1 L = L 0 1 + a ( T  - To) + + + ...I a ( T  - To)  a' ( T  - To) 

2! 3! 

The f i r s t  two  terms  of  equation ( 3 )  g i v e   t h e  common engineer ing  approximation  for  
thermal  expansion  which was u s e d   i n   r e f e r e n c e  3. The  more p r e c i s e   e x p r e s s i o n   f o r  
thermal  expansion i n   e q u a t i o n  ( 2 )  i s  u s e d   i n   t h e   p r e s e n t   a n a l y s i s .  

Assumptions made i n   t h e   p r e s e n t   a n a l y s i s  are a s   f o l l o w s :   t h e  CTE of  each 
ma te r i a l  is independent  of  temperature (i.e., a = a a t  any   tempera ture) ;   there  are 
no   t he rma l   g rad ien t s   i n   t he  materials; and   t he re  i s  no f r i c t i o n   a l o n g   t h e   i n t e r f a c e  
between t h e  materials. Based  on  these  assumptions and on equat ion ( 2 ) ,  the   fol lowing 
e x p r e s s i o n   f o r  a two-dimensional,   thermal-stress-free  interface  between two materials 
w i t h   d i f f e r e n t   c o e f f i c i e n t s  of thermal  expansion (see f i g .  3) is  d e r i v e d   i n  
appendix A: 

- 



where 

a a  - a a  
x1 y2 yl  x2 

x1 x2 
q =  a - a  

and A is an a r b i t r a r y   c o n s t a n t .  The x- and  y-axes are paral le l  t o   t h e   p r i n c i p a l  
axes of thermal  expansion  in  both materials, and a l l  thermal  expansion is r e l a t i v e   t o  
t h e   o r i g i n  of the  x ,y   coordinate   system  ( f ig .  3 ) .  A t  t h e   i n i t i a l   t e m p e r a t u r e ,  
T = To, equat ion ( 4 )  r educes   t o  

y = A 2  ( 5 )  

TWO materials in   con tac t   a long  a boundary  which, a t  a g i v e n   i n i t i a l   t e m p e r a t u r e ,  
is shaped  according  to  equation (51, w i l l  be in   con t inuous ,   i n t e r f e rence - f r ee   con tac t  
a t  any  temperature   i f  p and q are independent of T. Figure 4 shows the  family 
of so lu t ions   t o   equa t ion   (5 )   pas s ing   t h rough   an   a rb i t r a ry   po in t  (Xo,Yo), which a l s o  
determines  the  value of A ( A  = Yo/X$). A s  explained  in  appendix A, t he   so lu t ion  
shown i n   f i g u r e  4 can be appl ied   to   each  of the other   three  quadrants   to   produce  the 
shapes shown i n   f i g u r e  5. 

Each of the   shapes   i n   f i gu re  5 r ep resen t s  a d i f f e r e n t   r e l a t i o n s h i p  between 
the  CTE of the  two materials. For p = 1 ( f i g .   5 ( a ) ) ,   t h e   r e l a t i o n s h i p  is 

zf?lch is a l ine   pass ing   th rough  the   o r ig in  and the   po in t  (Xo,Yo). A s p e c i a l  case 
of p = 1 is an i n t e r f e r e n c e - f r e e   i n t e r f a c e  between two i s o t r o p i c  materials f o r  
which  and ay2 = ax2. For 1 < p < 00 ( f i g .   5 ( b ) ) ,   t h e   r e l a t i o n s h i p  
betweena#e c o e f f i c i e n t s  of thermal  expansion i s  a - a 
t i o n s h i p   r e s u l t s   i n  a curve   wi th   increas ing   s lope   d roughout   the   f i r s t   quadrant .  
S i m i l a r l y ,   f o r  0 < p < 1 ( f i g .   5 ( c ) ) ,   t h e   r e l a t i o n s h i p  between c o e f f i c i e n t s  of 
thermal  expansion is a - ay2 < axl - ax2, which r e s u l t s   i n  a curve  with  constant ly  
d e c r e a s i n g   s l o p e   i n   t h e   f i r s t   q u a d r a n t .  For p < 0 ( f i g .   5 ( d ) ) ,  a - a and 
a - a are of oppos i te   s ign .  The resul t ing  boundary  has   decreaslng  s lope 
d r o u g h o u t   t h e   f i r s t   q u a d r a n t  and is asymptot ic   to  the x- and  y-axes. For the  
boundary  result ing from p = 00 ( f i g .   5 ( e ) ) ,  aX1 = ax2, which impl ies  a thermal 
expansion  mismatch  only  in   the  y-direct ion.   Therefore ,   the   interference-free 
boundary is a v e r t i c a l   l i n e .   S i m i l a r l y ,   f o r  p = 0 ( f i g .   5 ( f ) ) ,  a = a and t h e  
interference-free  boundary is a h o r i z o n t a l   l i n e .  A s  a r e s u l t  of the  assumptlon that  
the  x- and  y-axes are p a r a l l e l   t o   t h e   p r i n c i p a l   a x e s  of thermal  expansion of both 
materials, the  x- and  y-axes are a l s o   i n t e r f e r e n c e - f r e e   i n t e r f a c e s  between  any two 
materials. 

- ay2 = axl - ax2. 

- axl 

I n   t h e   f i r s t   q u a d r a n t ,   t h i s   c o n d i t i o n   r e s u l t s   i n  a boundary 

- 

y2 > axl - ax2- This  rela- 

Yl 
Yl Y2 

1 x2 

Yl  Y2! 

4 



In  general   the  boundary  changes  shape  with  temperature,  as i n d i c a t e d   i n  equa- 
t i o n  ( 4 ) .  However, i f   t h e   c o e f f i c i e n t s  of   thermal   expansion  of   the two m a t e r i a l s  are 
s u c h   t h a t  a /ax1 = ay2/ax2,  then q = 0,  and  equation ( 4 )  reduces t o  

Yl 

ayl/axl y = A x  

Therefore ,   i f  the two materials   have the same r a t i o  of CTE i n  the y-d i rec t ion   to  CTE 
in   the   x -d i rec t ion ,   then   equat ion  ( 6 )  def ines  an interference-free  boundary which is  
independent of temperature. 

One o the r   spec ia l  case is worthy of cons idera t ion .   I f  the corresponding  coef- 
f i c i e n t s  of thermal  expansion of  one ma te r i a l   a r e  much greater   than  those of t he  
o the r  (i.e., a >> ax2) ,  then p approaches ay, /ax1 . Thus, f o r  

than  carbon-carbon (material 21, p is close to   un i ty  and a por t ion  of the  boundary 
can be closely  approximated by a s t r a i g h t   l i n e .  

an   i so t rop ic  mezhl n t h  the CTE roughly an order  of magnltude  greater x! 

APPLICATION TO FASTENERS 

Although t h e   s o l u t i o n   g i v e n  by equat ion (5 )  was d e r i v e d   f o r  a two-dimensional 
boundary, t h e   s o l u t i o n   c a n   b e   a p p l i e d   t o  a three-dimensional   fas tener .   Consider  two 
shee ts   jo ined  by a f a s t ene r   o f  a d i f f e ren t   ma te r i a l .   F igu re  6 i s  a c ross - sec t iona l  
view  of  such a f a s t ene r .  If t h e   c o e f f i c i e n t s  of   thermal   expansion  of   the  sheets   and 
t h e   f a s t e n e r  are i s o t r o p i c   i n   t h e   p l a n e  of t h e   s h e e t s   b u t   d i f f e r e n t   i n   t h e   t h i c k n e s s  
d i r ec t ion ,   t hen   t he   fo l l awing   equa t ion ,   de r ived   i n   append ix  A ,  can  be  used t o   d e f i n e  
the  thermal-s t ress-free  shape  of   an  axisymmetr ic   fas tener  when T = To: 

z = A r  P 

where 

A =  Z /R P 
0 0  

I n   g e n e r a l ,  as 
simplest   shape 
materials must 

the  discussed  in  appendix A, Ro can be a function  of 8; however, 
is an axisymmetric fa s t ene r .  A s  in   the   p rev ious   ana lys i s ,   bo th  
expand r e l a t i v e   t o   t h e   o r i g i n  of the  coordinate  system. Because a 

p rac t i ca l   f a s t ene r   canno t  come to a p o i n t   a t   t h e   o r i g i n ,  a shank of a r b i t r a r y  
rad ius  R must be b u i l t   i n t o   t h e   f a s t e n e r .  A washer of the  same ma te r i a l  as the  
shee t s  is added, as shown i n   f i g u r e  6, t o   s h i f t  the ver tex  of the con ica l   f a s t ene r  
outs ide  the  sheets   being  joined.  The boundary  between  the  shank  and  the  washer is 
not   in te r fe rence- f ree ;   thus ,  a clearance  between  shank and  washer is required to 
accommodate the  radial  thermal  expansion  mismatch.  Another  equally  important bound- 
a r y  between the  two materials is the i n t e r f a c e  between t h e   f a s t e n e r  head  and the 
washer,  which lies i n   t h e  z = 0 plane,  and is therefore   in te r fe rence- f ree   for   any  
two materials. 

5 



The shape of the load-bearing  surface is determined  from  equation (7 ) ,  where 
R and tw ( t h e  washer  thickness)  correspond  to Ro and Zo, respec t ive ly .  The 
dimensions R and tw can be var ied   to   p roduce   acceptab le   shear  and bear ing areas 
fo r   t he   f a s t ene r ,   and ,  as i l l u s t r a t e d   i n   f i g u r e  7, these  dimensions  give a des igner  
cons iderable   cont ro l   over   the   p ropor t ions  of the   thermal -s t ress - f ree   fas tener .  A 
genera l   thermal -s t ress - f ree   fas tener  is shown on t h e   u p p e r   l e f t  of f i g u r e  7. 
Doubling  the  washer  thickness and holding  the  radius   constant   produces  the  shape 
shown on the   l ower   l e f t .   I nc reas ing   t he  minimum radius  while  holding  the  washer 
thickness   constant   produces the shape on the upper  r ight.   Doubling the washer 
th ickness   whi le   increas ing   the  minimum radius  produces  the  shape shown on the  lower 
r i g h t .  

The f a s t e n e r  shown i n   f i g u r e s  6 and 7 has a shape  corresponding  to 1 < p < ~1. 
Figure 8 shows a similar f a s t e n e r  which  has a shape  corresponding  to 0 < p < 1.  A s  
shown i n   f i g u r e   9 ,   f o r  p = 1 the   shape   reduces   to   the   conica l   fas tener   p roposed   in  
re ference  1 .  I f   t h e  two materials are such t h a t  p < 0,  which means t h a t   e i t h e r  

< a and axl > ax2 
Y2 

and axl < ax2 , the  thermal-stress-f  ree 
:xApe does   no t   read i ly   l end   prac t ica l   thermal -s t ress - f ree   fas tener  
design,  as is e v i d e n t   i n   f i g u r e   5 ( d ) .   I f   t h e  two materials have c o e f f i c i e n t s  of 
thermal  expansion  which are e q u a l   i n  one d i r e c t i o n   b u t   n o t   i n   t h e   o t h e r  (see 
f i g s .   5 ( e )  and 5 ( f ) ) ,  it is imposs ib le   for  a snug- f i t t i ng   f a s t ene r   t o   e l imina te   t he  
thermal   expansion  mismatch  in   the  other   direct ion.   Also,   s ince  the  axisymmetr ic  
s o l u t i o n   f o r  a metallic fastener  in  carbon-carbon materials closely  approximates a 
cone,   the   exact   axisymmetr ic   thermal-s t ress-free metallic f a s t e n e r  which jo ins   shee t s  
of carbon-carbon material can be closely  approximated by a con ica l   f a s t ene r   w i th   t he  
v e r t e x   s l i g h t l y   o f f s e t  from the  point   about  which both materials expand. (See 
f ig .   10 . )   This   o f fse t  is fur ther   d i scussed   in   appendix  B. Although  fasteners of t h e  
type  discussed  herein  should  not   develop  thermal  stress, f u r t h e r   e f f o r t  i s  needed t o  
determine  whether  excessive stress concentrat ions  can  develop  in   mechanical ly   loaded 
j o i n t s  which  employ these  unusual ly   shaped  fas teners .  

CONCLUDING REMARKS 

A t h e o r e t i c a l   b a s i s   f o r   t h e   d e s i g n  of thermal-s t ress-free  fas teners   has   been 
developed   in   th i s   s tudy .  The ana lys i s   y i e lds   t he   equa t ion  of a two-dimensional 
thermal-s t ress-free  interface  between two materials wi th   o r tho t rop ic   coe f f i c i en t s  of 
thermal  expansion.  If   both materials have c o e f f i c i e n t s  of thermal  expansion  which 
are i s o t r o p i c   i n  one plane,   the  two-dimensional  analysis  can  be  used  to  design 
thermal -s t ress - f ree   fas teners ,  made from  one material, which are used t o   j o i n   p i e c e s  
of the o ther  material. The two materials remain i n   c o n t a c t  as  the temperature 
increases ,   forming a t i g h t   j o i n t   w i t h o u t   i n t e r f e r e n c e  and p rov id ing   e f f ec t ive   shea r  
t r a n s f e r .  The s implest   general   shape is an  axisymmetric,  curved-sided  fastener.  For 
two materials w i t h   i s o t r o p i c   c o e f f i c i e n t s  of thermal  expansion,  the  shape  reduces  to 
the   conica l   fas tener   p roposed  by Jackson  and  Taylor  in  Astronautics and Aeronautics,  
June  1983. I f   the   exac t   shape  of the   thermal -s t ress - f ree   fas tener  is near ly   conica l  
it can be approximated by a con ica l   f a s t ene r   w i th   t he   ve r t ex   s l i gh t ly   o f f se t .  

Assumptions made i n   t h i s   a n a l y s i s  are as fo l lows:   the   coef f ic ien ts  of thermal 
expansion of both materials are independent of temperature,   both materials are uni- 
form in   t empera ture ,  and t h e   i n t e r f a c e  between  the materials is f r i c t i o n l e s s .   I n   a n  
a c t u a l   j o i n t ,  these requirements are u n l i k e l y   t o  be f u l l y   s a t i s f i e d .  However, the 
re su l t i ng   t he rma l   i n t e r f e rences   u s ing  a fas tener   shape   def ined  by the   ana lys i s   g iven  
herein  should be s i g n i f i c a n t l y  smaller than  those of a snug- f i t t i ng   cy l ind r i ca l  fas- 
tener .   Fur ther   research  i s  needed to   p red ic t   t he rma l  stresses r e s u l t i n g  from vio la -  
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t i o n s  of the  basic  assumptions  of this ana lys i s .   Also ,   s ince  these f a s t e n e r s  are 
shaped much d i f f e r e n t l y  from conven t iona l   f a s t ene r s ,   fu r the r  work is necessa ry   t o  
determine stress concen t r a t ion   f ac to r s   i n   t he   j o in t   unde r   mechan ica l   l oad ing .  

Langley  Research  Center 
National  Aeronautics and  Space Administration 
Hampton, VA 23665 
October 1 4 ,  1983 
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A P P E N D I X  A 

ANALYSIS OF THERMAL-INTERFERENCE-FREE BOUNDARY 

Consider a plane which contains  two or thot ropic   mater ia l s   separa ted  by a bound- 
ary  a long which the   ma te r i a l s  are in   cont inuous  contact .  Choose a p o i n t   i n   t h a t  
plane  such that a l l  motion of bo th   mater ia l s  due to  thermal  expansion is  r e l a t i v e   t o  
t h a t   p o i n t .  Make tha t   po in t   t he   o r ig in  of an x,y  coordinate  system which is a l igned  
with  the  pr incipal   axes  of thermal  expansion of bo th   mater ia l s .   (See   f ig .  11 .) 
Consequently,   any  particle which is i n i t i a l l y  on the  x- or  y-axis moves only  along 
that   axis   during  thermal   expansion,  and  any  thermal  expansion  in  the f i r s t   q u a d r a n t  
is independent of the  expansion  in  any other  quadrant.   considering  each of the   o ther  
quadrants   separa te ly ,  it can be seen   tha t  a so lu t ion  which is v a l i d   f o r   t h e   f i r s t  
quadrant  can be individual ly   appl ied  to   each of the  other   quadrants .  

Assume t h a t  the c o e f f i c i e n t s  of thermal  expansion (CTE) for   bo th   mater ia l s   a re  
independent of temperature  and  location  within  each  material .  Also assume t h a t   t h e  
temperatures  are  uniform  throughout the materials and t h a t   t h e r e   a r e  no f r i c t i o n a l  
forces  acting  along  the  boundary. 

The ob jec t ive  is to   f i nd  an i n i t i a l  boundary  shape, y = f ( x )  , such  that  when 
the two mater ia ls   reach a new uniform  temperature,   the  material   boundaries w i l l  still 
coinc ide .   Le t   (x ,y)  be a po in t  on the  boundary a t  T = T A t  each   po in t   (x ,y) ,  
t h e r e   a r e   a d j a c e n t   p a r t i c l e s  of ma te r i a l s  1 and 2 .  The appropr i a t e   coe f f i c i en t s  of 
thermal  expansion are def ined  as   fol lows:  

0. 

c1 x1 CTE of ma te r i a l  1 i n   t he   x -d i r ec t ion  

CTE of mater ia l  1 in   the   y -d i rec t ion  

CTE of ma te r i a l  2 i n   t he   x -d i r ec t ion  

CTE of material 2 i n   t he   y -d i r ec t ion  

a. 
Yl 

a. x2 

a. 
Y2 

Using  equation ( 2 )  , the loca t ions  of t h e   p a r t i c l e s   a f t e r  a temperature  change of AT 
can be found as follows: 

For ma te r i a l  1 , 
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For material 2 ,  

APPENDIX A 

( A 2  

I 

I t  is requi red  that the or ig ina l   shape  of the boundary, y = f ( x )  , be such that 
(x, , y, ) and ( x2 ,y2)  are on coincident   boundaries  a f t e r  a temperature   increase of 
AT. The s lope  of this boundary a t  T = To + AT can be approximated  by 

Now as AT + 0 ,  the  boundary  approaches y = f ( x ) ,  and the  approximate  slope of t he  
boundary a t  T = To + AT becomes the   exac t   s lope  of t h e   i n i t i a l  boundary a t  T = To. 

A s  AT + 0 , Ay + 0 and Ax -P 0 ;  t h e r e f o r e ,  

l i m  Ay dy 
A W O  Ax dx 

"- - 

Taking  the limit of equation  (A3) as AT + 0 y i e l d s  

(a - a ) y  

dx (ax2 - a ) x  
d y =  Y2 Yl 

x1 

I n t e g r a t i o n  of equation (As) g ives  the i n i t i a l  boundary  shape 

y = Axp 

where 

a - a  
1 y2 

XI x2 
p = a Y  - a  



APPENDIX A 

and A is the   cons tan t  of i n t eg ra t ion .  A t  any other   temperature ,  T = To + AT, and 
the  boundary  of  each material undergoes  thermal  expansion  governed by equat ions ( A I )  
and ( A 2  ) to the  shape  given by 

q(T-To) 
y = A e  X P 

where 

a a  - a a  
x1  y2 yl x2 

q =  a - a  
x1 x2 

and  where  equation (A71 i s  obta ined  by d i r e c t   s u b s t i t u t i o n   o f   e i t h e r   e q u a t i o n  (AI 1 
o r  ( A 2 )  i n to   equa t ion   (A6) .  ' Ihus,   any  point  on  the  boundary  given by equation  (A6) 
a t  T = To, f o r  material 1 o r  material 2, w i l l  be   located  on  the  boundary  given by 
equat ion  (A71 a f t e r  a temperature  change.  Consequently,  although  boundary par t ic les  
o f   t he  t w o  materials move a l o n g   t h e   i n t e r f a c e  by general ly   unequal   amounts ,   the  
boundaries   remain  coincident   during  the  thermal   expansion.   "Ius ,   motion  of   one 
material does   no t   cons t ra in   mot ion   of   the   ne ighbor ing  material o r   c a u s e   s e p a r a t i o n  of 
t h e  two materials. 'Ihat is ,  the  expansion i s  s t r e s s - f r e e ,   y e t   t h e  two materials a re  
in   con t inuous   con tac t .  

The preceding  two-dimensional  solution  can  be  extended  to a s p e c i a l  case of a 
three-dimensional  solution. L e t  x and y become r and z ,  r e s p e c t i v e l y ,   i n  a 
cy l indr ica l   coord ina te   sys tem,  and  assume t h a t   t h e   c o e f f i c i e n t s  of thermal  expansion 
of  both materials are i s o t r o p i c   i n  a l l  r-8 planes.  ( A n  example  of t h i s   t ype  of 
material is an idea l ized   quas i - i so t ropic   f i l amentary   composi te .   In   the   p lane  of a 
sheet,   the  thermal  expansion is p r imar i ly   con t ro l l ed  by the   f i be r s ;  however,  through 
the  thickness,   the  thermal  expansion is con t ro l l ed  by the  matr ix  material.) 

A s  a r e s u l t  of this  assumption,  the  two-dimensional  solution is v a l i d  a t  any 
angle  e .  The thermal -s t ress - f ree   in te r face  is therefore   g iven  as fo l lows   for  
T = To: 

z = A r  P 

where 

and A i s  def ined by some spec i f i ed   po in t  (zo,~o) on t h e   i n i t i a l   i n t e r f a c e  as 

A = Zo/Ro P 

10 



A P P E N D I X  A 

The i n t e r f a c e  is given as fol lows  for  T = To + AT: 

q ( T-To) 
z =  A e  r P 

where 

a a  - a a  r l  22 zl r 2  

r l  r 2  
q =  a - a  

I n   g e n e r a l ,  Ro can be any  single-valued  function of 8 .  For  example,  the  shape  of 
a c ros s   s ec t ion  of t h e   f a s t e n e r   p a r a l l e l   t o   t h e  r -0  plane  could be a square  or  any 
other  polygon. However, the  s implest   shape  for  a f a s t ene r  is axisymmetr ic   (c i rcular  
c ros s   s ec t ion )  ; t h a t  is, Ro is independent of 0 -  
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APPENDIX B 

CALCULATION OF OFFSET OF VERTEX OF CONICAL FASTENER To ADJUST 
THERMAL-EXPANSION MISMATCH 

I f  a c o n i c a l   f a s t e n e r  is used i n  a j o i n t   i n  which t h e   c o e f f i c i e n t  of thermal 
expansion (CTE) of t he   f a s t ene r  and the  material being  joined are such   tha t  p is 
n o t   e q u a l   t o  1 ,  t h e   i n i t i a l l y  matzed su r faces  w i l l  attempt t o   t r a n s l a t e  and r o t a t e  by 
d i f f e r e n t  amounts i f   t h e r e  is a temperature  change. Some adjustment to  th i s   thermal -  
expansion  mismatch  can be e f f ec t ed  by spec i fy ing   the  new loca t ion  of t he   hypo the t i ca l  
i n t e r s e c t i o n  of the   sur faces   a f te r   unres t ra ined   thermal   expans ion .  The loca t ion  of 
t h e   i n t e r s e c t i o n   c a n  be ad jus ted  by o f f s e t t i n g   t h e   v e r t e x  of the  cone from t h e   o r i g i n  
along  the  z-axis .  A representat ive  arrangement   in   the  r -z   plane  before  and a f t e r  
f ree   thermal   expansion is i l l u s t r a t e d   i n   f i g u r e  1 2 .  Extension  to  an  axisymmetric 
conf igura t ion  is e f f e c t e d  by revolving  the  graph  about   the  z-axis .  

Before  expansion,  the two material boundaries  have  the common equat ion 

z = m r + b  

where b i s  t h e   o f f s e t  of the   ver tex  of the  cone (see sketch A ) .  

Material  2 
boundary 7 T = T  0 + A T  

2 
I ,U. -CI  I U  I L 

I n t e r s e c t i o n  
(zero  mismatch)  

Mater ia l  1 
boundary 

M a t o r i a l  1 

Material  2 

T 
= To 

(B1 

r 

Sketch A 

1 2  



APPENDIX B 

Af ter  a change in   t empera ture  AT, the  boundaries  of the  freely  expanding mate- 
rials have the fol lowing  equat ions,  which r e s u l t  from  combining equat ion ( B l )  with 
equat ions (AI  1 and (A2), as follows: 

(azl-a ) A T  a AT 
z = m e  r1 r + e  b 

zl 
1 1 

and 

(az2-a r 2  ) A T  az2AT b z = m e  2 r + e  2 (B3) 

Sketch A shows the  boundaries   before  and a f t e r  a temperature   increase.  

I n   f i g u r e  1 2 ,  t he   dashed   l i ne   r ep resen t s   t he   i n i t i a l   i n t e r f ace ,  and t h e   s o l i d  
l i n e s - r e p r e s e n t  the boundaries of the two materials a t  the   f i na l   t empera tu re .  The 
shaded  region  between  the  boundaries  represents  the  thermal-expansion mismatch  which 
r e s u l t s  when t h e   c o e f f i c i e n t s  of thermal  expansion of the  materials are such   tha t  
p = 1 . The i n t e r s e c t i o n  of the  two boundaries  can  be  controlled by ad jus t ing   t he  
va lue  of b .   This   has   the  effect  of ad jus t ing   t he  amount of in t e r f e rence   p re sen t  
i n   t h e   j o i n t  a t  t h e   f i n a l   t e m p e r a t u r e  To + AT. A t  t h e   p o i n t   o f   i n t e r s e c t i o n  
z1 = z2  and rl = r2. I f   t h e   p o i n t   o f   i n t e r s e c t i o n   i n  material 2 is  i n i t i a l l y  a t  
z = b + R c o t (  $/2) + t f ,   t h e n  by s imul taneous   so lu t ion   of   equa t ions  ( B 2 )  and  (B3),  

where 

c =  a AT 
22 e - e  

a AT zl 

A con ica l   f a s t ene r   w i th  the v e r t e x   o f f s e t  by the  amount g iven   in   equa t ion  ( B 4 )  
is e s s e n t i a l l y  a l inear   approximation of the  exact   thermal-s t ress-free  shape  given  by 
equat ion ( 5 ) .  The nearer   the  exact   shape is t o  a cone,  the  lower  the  thermal m i s -  
match  between  the  conical  fastener  and  the material being  joined.  Although  equa- 
t i o n   ( ~ 4 )  provides a means of ad jus t ing  the thermal-expansion  mismatch  between the 
two materials, the  thermal stresses which r e s u l t  from t h i s  mismatch  depend on the  
s t i f f n e s s e s  of the materials. The re fo re ,   add i t iona l   ana lys i s ,  which accounts   for  
material s t i f f n e s s ,  is n e c e s s a r y   t o   c a l c u l a t e   t h e   v e r t e x   o f f s e t ,  which  minimizes 
thermal stress. 
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A Graphite 

Stainless   s teel  
L-83-113 

Figure 1 .- Cylindrical   stainless-steel   fastener i n  graphite 
which failed  during f i rs t  thermal  cycle. 

G r a p h i t e  
C o i n c i d e n t  

v e r t i c e s  7 

f 
i 

Cold 

H o t  

L S n u g - f i t t i n g   c o n e s ,   s l i d e  
w i t h o u t   i n t e r f e r e n c e  
when h e a t e d  

f a s t e n e r  

( a )  Schematic  of biconic  fastener. 
L-83-114 

(b) Test specimen af ter   four   cycles   to  1600OF. 

Figure 2.- Biconic s tee l   fas tener  i n  graphite. 
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Material 1 
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X 

Figure 3 . -  Thermal-stress-free boundary. Figure 3 . -  Thermal-stress-free boundary. 

Y 

X 

Figure 4. - Solutions to equation y = &. 
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t 4 4 

(a) p = 1 .  (b) 1 < p < OJ. (c) 0 < p < 1 .  

t 

(d) -0) < p < 0. ( e )  p = 03. (f) p = 0 .  

Figure 5 . -  Thermal-stress-free  shapes in x-y plane. 

LTherrnal -s t ress- f ree  boundar ies 

Figure 6.-  'Ihermal-stress-free  fastener for 1 < p < OJ. 
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Figure 7.- I l lus t ra t ions  of e f fec t  of design  parameters t, and R on 
fastener  proportions. 

Figure 8.- !thermal-stress-free  fastener  for 0 < p < 1. 
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Figure 9.- Thermal-stress-free  fastener  for p = 1. 

Figure 10.- Metallic  fastener i n  carbon-carbon  material ( p  = 
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Y Boundary a t  
T = To = A T  

Ma 

Boundary a t  T = To 

t e r i a l  1 

Material 2 

Point o f  
reference 

X 

Figure 1 1 . -  Thermal-stress-free boundary between t w o  mater ia ls   in  a plane. 
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Interference o r  
"" I n i t i a l  boundaries ( T  = T o )  separation 

Final  boundaries ( T  = To + A T )  
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"" """ 
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I 
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I 

Figure 12. - Thermal expansion of conical  fastener  with  offset  vertex. 
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